84 research outputs found

    Multi-locus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella enterica </it>subsp. <it>enterica </it>serotype Enteritidis is known as an important and pathogenic clonal group which continues to cause worldwide sporadic cases and outbreaks in humans. Here a new multiple-locus variable-number tandem repeat analysis (MLVA) method is reported for highly-discriminative subtyping of <it>Salmonella </it>Enteritidis. Emphasis was given on the most predominant phage types PT4 and PT8. The method comprises multiplex PCR specifically amplifying repeated sequences from nine different loci followed by an automatic fragment size analysis using a multicolor capillary electrophoresis instrument. A total of 240 human, animal, food and environmental isolates of <it>S</it>. Enteritidis including 23 definite phage types were used for development and validation. Furthermore, the MLVA types were compared to the phage types of several isolates from two recent outbreaks to determine the concordance between both methods and to estimate their in vivo stability. The in vitro stability of the two MLVA types specifically for PT4 and PT8 strains were determined by multiple freeze-thaw cycles.</p> <p>Results</p> <p>Seventy-nine different MLVA types were identified in 240 <it>S</it>. Enteritidis strains. The Simpson's diversity index for the MLVA method was 0.919 and Nei diversity values for the nine VNTR loci ranged from 0.07 to 0.65. Twenty-four MLVA types could be assigned to 62 PT4 strains and 21 types to 81 PT8 strains. All outbreak isolates had an indistinguishable outbreak specific MLVA type. The in vitro stability experiments showed no changes of the MLVA type compared to the original isolate.</p> <p>Conclusion</p> <p>This MLVA method is useful to discriminate <it>S</it>. Enteritidis strains even within a single phage type. It is easy in use, fast, and cheap compared to other high-resolution molecular methods and therefore an important tool for surveillance and outbreak studies for <it>S</it>. Enteritidis.</p

    A novel strategy to obtain quantitative data for modelling: Combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses

    Get PDF
    The primary sources for the major zoonotic pathogen Salmonella are food-producing animals such as pigs and poultry. For risk assessment and hazard analysis and critical control point (HACCP) concepts, it is essential to produce large amounts of quantitative data, which is currently not achievable with the standard cultural based methods for enumeration of Salmonella

    Detection of VIM-1-producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a breeding pig farm in Germany in 2017 and their molecular relationship to former VIM-1-producing S. Infantis Isolates in German livestock production

    Get PDF
    In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∌290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S. Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017. IMPORTANCE: Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread

    Dissection of Highly Prevalent qnrS1-Carrying IncX Plasmid Types in Commensal Escherichia coli from German Food and Livestock

    Get PDF
    Plasmids are mobile genetic elements, contributing to the spread of resistance determinants by horizontal gene transfer. Plasmid-mediated quinolone resistances (PMQRs) are important determinants able to decrease the antimicrobial susceptibility of bacteria against fluoroquinolones and quinolones. The PMQR gene qnrS1, especially, is broadly present in the livestock and food sector. Thus, it is of interest to understand the characteristics of plasmids able to carry and disseminate this determinant and therewith contribute to the resistance development against this class of high-priority, critically important antimicrobials. Therefore, we investigated all commensal Escherichia (E.) coli isolates, with reduced susceptibility to quinolones, recovered during the annual zoonosis monitoring 2017 in the pork and beef production chain in Germany (n = 2799). Through short-read whole-genome sequencing and bioinformatics analysis, the composition of the plasmids and factors involved in their occurrence were determined. We analysed the presence and structures of predominant plasmids carrying the PMQR qnrS1. This gene was most frequently located on IncX plasmids. Although the E. coli harbouring these IncX plasmids were highly diverse in their sequence types as well as their phenotypic resistance profiles, the IncX plasmids-carrying the qnrS1 gene were rather conserved. Thus, we only detected three distinct IncX plasmids carrying qnrS1 in the investigated isolates. The IncX plasmids were assigned either to IncX1 or to IncX3. All qnrS1-carrying IncX plasmids further harboured a ÎČ-lactamase gene (bla). In addition, all investigated IncX plasmids were transmissible. Overall, we found highly heterogenic E. coli harbouring conserved IncX plasmids as vehicles for the most prevalent qnr gene qnrS1. These IncX plasmids may play an important role in the dissemination of those two resistance determinants and their presence, transfer and co-selection properties require a deeper understanding for a thorough risk assessment

    DNA microarray analysis of Salmonella serotype Typhimurium strains causing different symptoms of disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella enterica </it>subsp. <it>enterica </it>is one of the leading food-borne pathogens in the USA and European countries. Outcome of human <it>Salmonella </it>serotype Typhimurium infections ranges from mild self-limiting diarrhoea to severe diarrhoea that requires hospitalization. Increased knowledge of the mechanisms that are responsible for causing infection and especially the severity of infection is of high interest.</p> <p>Results</p> <p>Strains were selected from patients with mild infections (n = 9) and patients with severe infections (n = 9) and clinical data allowed us to correct for known underlying diseases. Additionally, outbreak isolates (n = 3) were selected. Strains were analyzed on a DNA-DNA microarray for presence or absence of 281 genes covering marker groups of genes related to pathogenicity, phages, antimicrobial resistance, fimbriae, mobility, serotype and metabolism. Strains showed highly similar profiles when comparing virulence associated genes, but differences between strains were detected in the prophage marker group. The <it>Salmonella </it>virulence plasmid was present in 72% of the strains, but presence or absence of the virulence plasmid did not correspond to disease symptoms. A dendrogram clustered strains into four groups. Clustering confirmed DT104 as being a clonal phagetype. Clustering of the remaining strains was mainly correlated to presence or absence of the virulence plasmid and mobile elements such as transposons. Each of the four clusters in the tree represented an almost equal amount of strains causing severe or mild symptoms of infection.</p> <p>Conclusions</p> <p>We investigated clinical significance of known virulence factors of <it>Salmonella </it>serotype Typhimurium strains causing different disease symptoms, and conclude that the few detected differences in <it>Salmonella </it>serotype Typhimurium do not affect outcome of human disease.</p

    Genetic types, gene repertoire, and evolution of isolates of the Salmonella enterica serovar 4,5,12:i:- Spanish clone assigned to different phage types

    Get PDF
    Salmonella enterica subsp. enterica 4,[5],12:i:− is one of the most prevalent serovars associated with human infections worldwide. Two multidrug-resistant clones, designated Spanish and European clones, are recognized as having importance for public health and are subject to control measures in the European Union. In this study, 23 clinical isolates belonging to the Spanish clone were characterized by multilocus sequence typing, multiple-locus variable number tandem repeat analysis (MLVA), PCR amplification and sequencing, and a DNA microarray targeting 263 genes, in order to provide new insights into their origins and further evolution. The derived data were compared with information available from other studies for S. 4,[5],12:i:− isolates of both the Spanish and the European clones, to identify differential molecular markers which could be potentially used as surveillance tools in the control of dissemination of this serovar. The isolates analyzed were assigned to sequence type 19 and to 17 MLVA patterns, with 3-13-16-NA-311 being the most prevalent. Highly similar virulence, metabolic, and prophage-associated gene profiles were identified, but DNA mobility markers distinguished five genotypes. Two types of deletions, caused by insertion of IS26, presumably donated by pUO-STmR/RV1-like plasmids typically found in the Spanish clone, affected the fljAB operon and surrounding DNA. The Spanish and European clones differ in sequence type, MLVA patterns, gene repertoire, and fljAB deletion type. The observed variability supports an independent evolution of the two successful monophasic clones from different Salmonella enterica serovar Typhimurium ancestors and can be taken into consideration for epidemiological surveillance

    Identification of a blaVIM-1-Carrying IncA/C2 Multiresistance Plasmid in an Escherichia coli Isolate Recovered from the German Food Chain

    Get PDF
    Within the German national monitoring of zoonotic agents, antimicrobial resistance determination also targets carbapenemase-producing (CP) Escherichia coli by selective isolation from food and livestock. In this monitoring in 2019, the CP E. coli 19-AB01133 was recovered from pork shoulder. The isolate was assigned to the phylogenetic group B1 and exhibited the multi-locus sequence-type ST5869. Molecular investigations, including whole genome sequencing, of 19-AB01133 revealed that the isolate carried the resistance genes blaVIM-1, blaSHV-5 and blaCMY-13 on a self-transmissible IncA/C2 plasmid. The plasmid was closely related to the previously described VIM-1-encoding plasmid S15FP06257_p from E. coli of pork origin in Belgium. Our results indicate an occasional spread of the blaVIM-1 gene in Enterobacteriaceae of the European pig population. Moreover, the blaVIM-1 located on an IncA/C2 plasmid supports the presumption of a new, probably human source of carbapenemase-producing Enterobacteriaceae (CPE) entering the livestock and food chain sector

    The nematode worm Caenorhabditis elegans as an animal experiment replacement for assessing the virulence of different Salmonella enterica strains

    Get PDF
    Caenorhabditis (C.) elegans has become a popular toxicological and biological test organism in the last two decades. Furthermore, the role of C. elegans as an alternative for replacing or reducing animal experiments is continuously discussed and investigated. In the current study, we investigated whether C. elegans survival assays can help in determining differences in the virulence of Salmonella enterica strains and to what extent C. elegans assays could replace animal experiments for this purpose. We focused on three currently discussed examples where we compared the longevity of C. elegans when fed (i) with S. enterica serovar Enteritidis vaccination or wild-type strains, (ii) with lipopolysaccharide (LPS) deficient rough or LPS forming smooth S. enterica serovar Enteritidis, and (iii) with an S. enterica subsp. diarizonae strain in the presence or absence of the typical pSASd plasmid encoding a bundle of putative virulence factors. We found that the C. elegans survival assay could indicate differences in the longevity of C. elegans when fed with the compared strain pairs to a certain extent. Putatively higher virulent S. enterica strains reduced the lifespan of C. elegans to a greater extent than putatively less virulent strains. The C. elegans survival assay is an effective and relatively easy method for classifying the virulence of different bacterial isolates in vivo, but it has some limitations. The assay cannot replace animal experiments designed to determine differences in the virulence of Salmonella enterica strains. Instead, we recommend using the described method for pre-screening bacterial strains of interest to select the most promising candidates for further animal experiments. The C. elegans assay possesses the potential to reduce the number of animal experiments. Further development of the C. elegans assay in conjunction with omics technologies, such as transcriptomics, could refine results relating to the estimation of the virulent potential of test organisms

    Diversity of Salmonella enterica serovar Derby isolated from pig, pork and humans in Germany

    Get PDF
    Salmonella enterica serovar Derby (S. Derby) is one of the most prevalent serovars in pigs in Europe and in the U.S. and ranks among the 10 most frequently isolated serovars in humans. Therefore, a set of 82 epidemiologically unrelated S. Derby strains isolated between 2006 and 2008 from pigs, pork and humans in Germany was selected and investigated in respect to the transmission of clonal groups of the serovar along the food chain. Various phenotypic and genotypic methods were applied and the pathogenicity and resistance gene repertoire was determined. Phenotypically 72% of the strains were susceptible to all 17 antimicrobials tested while the others were monoresistant to tetracycline or multi-resistant with different resistance profiles. Four major clonal groups were identified based on PFGE, sequence data of the virulence genes sopA, sopB and sopD, VNTR-locus STTR5 and MLST revealing also the new sequence type ST774. Thirty different PFGE profiles were detected resulting in four clusters representing the four groups. The pathogenicity gene repertoire of 32 representative S. Derby strains analyzed by microarray showed six types with differences in the Salmonella pathogenicity islands, pathogenicity genes on smaller islets or prophages and fimbriae coding genes. The pathogenicity gene repertoire of the predominant types PAT DE1 and DE2 were most similar to the ones of S. Paratyphi B (dT+, O5−) and to a minor degree to S. Infantis and S. Virchow PATs. Overall this study showed that in Germany currently one major S. Derby clone is frequently isolated from pigs and humans. Contaminated pork was identified as one vehicle and consequently is a risk for human health. To prevent this serovar from entering the food chain, control measurements should be applied at the farm level
    • 

    corecore